skip to main content


Search for: All records

Creators/Authors contains: "Gabius, Hans-Joachim"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2024
  2. Abstract

    Trafficking of leukocytes and their local activity profile are of pivotal importance for many (patho)physiological processes. Fittingly, microenvironments are complex by nature, with multiple mediators originating from diverse cell types and playing roles in an intimately regulated manner. To dissect aspects of this complexity, effectors are initially identified and structurally characterized, thus prompting familial classification and establishing foci of research activity. In this regard, chemokines present themselves as role models to illustrate the diversification and fine-tuning of inflammatory processes. This in turn discloses the interplay among chemokines, their cell receptors and cognate glycosaminoglycans, as well as their capacity to engage in new molecular interactions that form hetero-oligomers between themselves and other classes of effector molecules. The growing realization of versatility of adhesion/growth-regulatory galectins that bind to glycans and proteins and their presence at sites of inflammation led to testing the hypothesis that chemokines and galectins can interact with each other by protein–protein interactions. In this review, we present some background on chemokines and galectins, as well as experimental validation of this chemokine–galectin heterodimer concept exemplified with CXCL12 and galectin-3 as proof-of-principle, as well as sketch out some emerging perspectives in this arena.

     
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. Glycan-lectin recognition is assumed to elicit its broad range of (patho)physiological functions via a combination of specific contact formation with generation of complexes of distinct signal-triggering topology on biomembranes. Faced with the challenge to understand why evolution has led to three particular modes of modular architecture for adhesion/growth-regulatory galectins in vertebrates, here we introduce protein engineering to enable design switches. The impact of changes is measured in assays on cell growth and on bridging fully synthetic nanovesicles (glycodendrimersomes) with a chemically programmable surface. Using the example of homodimeric galectin-1 and monomeric galectin-3, the mutual design conversion caused qualitative differences, i.e., from bridging effector to antagonist/from antagonist to growth inhibitor and vice versa. In addition to attaining proof-of-principle evidence for the hypothesis that chimera-type galectin-3 design makes functional antagonism possible, we underscore the value of versatile surface programming with a derivative of the pan-galectin ligand lactose. Aggregation assays withN,N′-diacetyllactosamine establishing a parasite-like surface signature revealed marked selectivity among the family of galectins and bridging potency of homodimers. These findings provide fundamental insights into design-functionality relationships of galectins. Moreover, our strategy generates the tools to identify biofunctional lattice formation on biomembranes and galectin-reagents with therapeutic potential.

     
    more » « less
  6. Abstract

    Calix[4]arene PTX008 is an angiostatic agent that inhibits tumor growth in mice by binding to galectin‐1, a β‐galactoside‐binding lectin. To assess the affinity profile of PTX008 for galectins, we used15N,1H HSQC NMR spectroscopy to show that PTX008 also binds to galectin‐3 (Gal‐3), albeit more weakly. We identified the contact site for PTX008 on the F‐face of the Gal‐3 carbohydrate recognition domain. STD NMR revealed that the hydrophobic phenyl ring crown of the calixarene is the binding epitope. With this information, we performed molecular modeling of the complex to assist in improving the rather low affinity of PTX008 for Gal‐3. By removing theN‐dimethyl alkyl chain amide groups, we produced PTX013 whose reduced alkyl chain length and polar character led to an approximately eightfold stronger binding than PTX008. PTX013 also binds Gal‐1 more strongly than PTX008, whereas neither interacts strongly, if at all, with Gal‐7. In addition, PTX013, like PTX008, is an allosteric inhibitor of galectin binding to the canonical ligand lactose. This study broadens the scope for galectin targeting by calixarene‐based compounds and opens the perspective for selective galectin blocking.

     
    more » « less